Huntingtin expression stimulates endosomal-lysosomal activity, endosome tubulation, and autophagy.
نویسندگان
چکیده
An expansion of polyglutamines in the N terminus of huntingtin causes Huntington's disease (HD) and results in the accrual of mutant protein in the nucleus and cytoplasm of affected neurons. How mutant huntingtin causes neurons to die is unclear, but some recent observations suggest that an autophagic process may occur. We showed previously that huntingtin markedly accumulates in endosomal-lysosomal organelles of affected HD neurons and, when exogenously expressed in clonal striatal neurons, huntingtin appears in cytoplasmic vacuoles causing cells to shrink. Here we show that the huntingtin-enriched cytoplasmic vacuoles formed in vitro internalized the lysosomal enzyme cathepsin D in proportion to the polyglutamine-length in huntingtin. Huntingtin-labeled vacuoles displayed the ultrastructural features of early and late autophagosomes (autolysosomes), had little or no overlap with ubiquitin, proteasome, and heat shock protein 70/heat shock cognate 70 immunoreactivities, and altered the arrangement of Golgi membranes, mitochondria, and nuclear membranes. Neurons with excess cytoplasmic huntingtin also exhibited increased tubulation of endosomal membranes. Exogenously expressed human full-length wild-type and mutant huntingtin codistributed with endogenous mouse huntingtin in soluble and membrane fractions, whereas human N-terminal huntingtin products were found only in membrane fractions that contained lysosomal organelles. We speculate that mutant huntingtin accumulation in HD activates the endosomal-lysosomal system, which contributes to huntingtin proteolysis and to an autophagic process of cell death.
منابع مشابه
BIG2, a guanine nucleotide exchange factor for ADP-ribosylation factors: its localization to recycling endosomes and implication in the endosome integrity.
Small GTPases of the ADP-ribosylation factor (ARF) family play a key role in membrane trafficking by regulating coated vesicle formation, and guanine nucleotide exchange is essential for the ARF function. Brefeldin A blocks the ARF-triggered coat assembly by inhibiting the guanine nucleotide exchange on ARFs and causes disintegration of the Golgi complex and tubulation of endosomal membranes. B...
متن کاملAn ESCRT–spastin interaction promotes fission of recycling tubules from the endosome
Mechanisms coordinating endosomal degradation and recycling are poorly understood, as are the cellular roles of microtubule (MT) severing. We show that cells lacking the MT-severing protein spastin had increased tubulation of and defective receptor sorting through endosomal tubular recycling compartments. Spastin required the ability to sever MTs and to interact with ESCRT-III (a complex contro...
متن کاملBIG2, A Guanine Nucleotide Exchange Factor for ADP- Ribosylation Factors: Its Localization to Recycling Endosomes and Implication in the Endosome Integrity□D
Small GTPases of the ADP-ribosylation factor (ARF) family play a key role in membrane trafficking by regulating coated vesicle formation, and guanine nucleotide exchange is essential for the ARF function. Brefeldin A blocks the ARFtriggered coat assembly by inhibiting the guanine nucleotide exchange on ARFs and causes disintegration of the Golgi complex and tubulation of endosomal membranes. BI...
متن کاملSphingosine Kinase 1 Cooperates with Autophagy to Maintain Endocytic Membrane Trafficking.
Sphingosine kinase 1 (Sphk1) associates with early endocytic membranes during endocytosis; however, the role of sphingosine or sphingosine-1-phosphate as the critical metabolite in endocytic trafficking has not been established. Here, we demonstrate that the recruitment of Sphk1 to sphingosine-enriched endocytic vesicles and the generation of sphingosine-1-phosphate facilitate membrane traffick...
متن کاملProperties of the endosomal-lysosomal system in the human central nervous system: disturbances mark most neurons in populations at risk to degenerate in Alzheimer's disease.
Specific antibodies and cytochemical markers combined with several imaging and morphometric techniques were used to characterize the endosomal-lysosomal system in mature neurons of the normal human central nervous system and to quantitate changes in its function in Alzheimer's disease. Compartments containing cathespin D (Cat D) and other acid hydrolases included a major subpopulation of mature...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 20 19 شماره
صفحات -
تاریخ انتشار 2000